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Abstract
In this paper, we use supersymmetric unitary transformation theory to solve
a coupled-channel cavity QED model which includes the Stark term and
frequency detuning. We give the eigenvalue, eigenstates and time evolution
of the state vector of the system.

PACS numbers: 1220, 0365, 1130P, 4250D

Supersymmetric quantum mechanics has attracted much attention because it presents a concise
and wonderful method for solving the eigenvalue equations of quantum mechanics. Recently,
the supersymmetric method has been used effectively to solve the energy level of many potential
problems [1–3], In [4] Hong-yi Fan proposed that the Jaynes–Cummings model can be solved
by a supersymmetric unitary transformation. There is no doubt that this new method will
further enrich the contents of supersymmetric quantum mechanics. In this paper, we use
supersymmetric unitary transformation theory to solve a coupled-channel cavity quantum
electrodynamics (QED) model which includes the Stark term and the frequency detuning [5].
We give the eigenvalue, eigenstates and time evolution of the state vector of the system.

The Hamiltonian of the fully quantized coupled-channel cavity QED model reads [5]

H = ωpN + E+−Jz + (gLz + δ)(1 − σz)/2 + g(a+
SaP + a+

P aA)σ+ + g(a+
P aS + a+

AaP )σ− (1)

where the subscripts P, S and A represent pump, Stokes and anti-Stokes modes, respectively; a
and a+ are the creation and annihilation operators for the corresponding modes, σ are the usual
atomic transition operators; Lz = nA−nS , Jz = Lz+ 1

2σz and N = nP +nS +nA; gLz(1−σz)/2
is the Stark term and δ(1 − σz)/2 represents frequency detuning. It can be proved that N and
Jz are constants of motion. To determine the energy eigenvalues of the coupled-channel cavity
QED model, Wang et al have given a connection between field variables and the orbital angular
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momentum [6],

L+ =
√

2(aSa
+
P + a+

AaP ) (2a)

L− =
√

2(aP a+
S + a+

P aA) (2b)

Lz = a+
AaA − a+

SaS (2c)

L2 = (nA − nS)
2 + (nA + nS)(2nP + 1) + 2nP + 2(a2

P a+
Aa+

S + a+ 2
P aSaA) (2d)

where L− and L+ are the lowering and raising operators of the momentum. They succeeded in
obtaining the eigenvalues and corresponding eigenvectors for the special case of Jz = − 1

2 and
without a Stark term or frequency detuning. Recently, Ying Wu presented a simple algebraic
method to solve this model by establishing its connection with the model for a spin- 1

2 particle
in a magnetic field, and taking advantage of equations (2). He obtained the eigenvalues and
corresponding eigenvectors for the special case without Stark term and frequency detuning [5].
He also gave the eigenvalues but not the eigenvectors for the general case described by
equation (1). Here, we use supersymmetric unitary transformation theory to solve the general
coupled-channel cavity QED model. We give the eigenvalue, eigenvectors and time evolution
of the state vector of the system.

To construct the supersymmetric unitary transformation operator, we first define the
supersymmetric transformation generators as follows:

Q = L+σ− Q+ = L−σ+ (3a)

N ′ = L+L−σ−− + L−L+σ++ = L2 − J 2
z + 1

4 (3b)

where

σ++ = σ+σ− = 1
2 (1 + σz) σ−− = σ−σ+ = 1

2 (1 − σz). (4)

It is easy to see that (N ′,Q+,Q) form supersymmetric generators and have supersymmetric
Lie algebra properties, i.e.

Q2 = Q+ 2 = 0 [Q+,Q] = N ′σz {Q,σz} = {
Q+, σz

} = 0

N ′ = {
Q,Q+

}
[N ′,Q] = [N ′,Q+] = 0 (Q+ − Q)2 = −N ′ (5)

in which { } denotes the anticommutation bracket. With the help of equations (2) and (3),
equation (1) can be written as

H = H0 +
g√
2
(Q + Q+) − 1

2
g
(
Jz + 1

2 + δ′)σz (6)

where

H0 = 1
2g

(
δ′ + 1

2

)
+ ωPN +

(
E+− + 1

2g
)
Jz δ′ = δ

g
. (7)

Using the commutation relation [Lz, L±] = ±L±, we can prove that H0 commutes with N ′,Q
and Q+, i.e.

[H0, N
′] = [H0,Q] = [H0,Q

+] = 0. (8)

With the aid of the supersymmetric transformation generators defined above, we construct
the supersymmetric unitary transformation operator so that the Hamiltonian in equation (6)
can be diagonalized. The supersymmetric unitary transformation operator is defined as

T = exp

[
−θ

2
N ′−1/2(Q+ − Q)

]
(9)
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where N ′−1/2 is defined as

N ′−1/2 = (L+L−)−1/2σ−− + (L−L+)
−1/2σ++ (10)

and θ is a function of operators to be determined later, and is supposed to satisfy the following
commutation relations:

[θ,Q] = [
θ,Q+

] = [
N ′−1/2, θ

] = [θ,H0] = 0. (11)

Therefore, equation (9) can be expanded into the following form:

T = cos

(
θ

2

)
− sin

(
θ

2

)
N ′−1/2(Q+ − Q). (12)

From equations (8), (11) and (12), we have

T −1H0T = H0 (13)

T −1(Q + Q+)T = cos(θ)(Q + Q+) + sin(θ)
√

N ′σz. (14)

T −1σzT = cos(θ)σz − sin(θ)N ′−1/2(Q + Q+). (15)

Therefore,

H ′ = T −1HT = H0 +
g√
2

cos(θ)(Q + Q+) +
g√
2

sin(θ)
√

N ′σz

− 1
2g(Jz + 1

2 + δ′)[cos(θ)σz − sin(θ)N ′−1/2(Q + Q+)]. (16)

If we let

cos(θ) = Jz + 1
2 + δ′√

2N ′ +
(
Jz + 1

2 + δ′)2
sin(θ) = −

√
2N ′√

2N ′ +
(
Jz + 1

2 + δ′)2
(17)

we can obtain the diagonalized Hamiltonian as follows:

H ′ = T −1HT = H0 − 1
2g

√
2N ′ +

(
Jz + 1

2 + δ′)2
σz

= H0 − g√
2

√(
L2 − J 2

z + 1
4

)
+ 1

2

(
Jz + 1

2 + δ′)2
σz. (18)

It should be pointed out that equation (17) should be understood in the sense of eigenvalues
and eigenvalue equations for the operators L2, Jz. According to the theory of angular
momentum, and using the formulae

L+|N, l,m〉 =
√

l(l + 1) − m(m + 1) |N, l,m + 1〉 (19a)

L−|N, l,m〉 =
√

l(l + 1) − m(m − 1) |N, l,m − 1〉 (19b)

where |N, l,m〉 is the common eigenstate of the operators N,L2 and Lz, for a given N ,
l = N,N − 2, . . . , [N − 2 int(N/2)], where int(N/2) = N/2 for even N and int(N/2) =
(N − 1)/2 for odd N , and for any allowable l, m = 0,±1,±2, . . . ,±l, we easily see that the
eigenvectors of H ′ read∣∣� ′

1

〉 = |N, l,m, +〉 ∣∣� ′
2

〉 = |N, l,m,−〉 (20)
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where the two atomic levels |±〉 satisfy σz|±〉 = ±|±〉. Thus the eigenvalues and eigenvectors
of H are given by, respectively,

E1 = E0(N,m) − 1
2g�(l,m) (21a)

E2 = E0(N,m − 1) + 1
2g�(l,m − 1) (21b)

|�1〉 = T
∣∣� ′

1

〉
=

√
1

2
+

m + 1 + δ′

2�(l,m)
|N, l,m, +〉 −

√
1

2
− m + 1 + δ′

2�(l,m)
|N, l,m + 1,−〉 (21c)

|�2〉 = T
∣∣� ′

2

〉
=

√
1

2
+

m + δ′

2�(l,m − 1)
|N, l,m,−〉 +

√
1

2
− m + δ′

2�(l,m − 1)
|N, l,m − 1, +〉 (21d)

where

E0(N,m) = 1
2g(m + 1 + δ′) + ωPN + E+−

(
m + 1

2

)
(21e)

�(l,m) =
√

2l(l + 1) − 2m(m + 1) + (m + 1 + δ′)2. (21f)

From equations (21), one easily sees that when m = l, |�1〉 = |N, l, l, +〉 is a single
state, the corresponding energy eigenvalue E1 = ωPN + E+−(l + 1

2 ), and when m = −l,
|�2〉 = |N, l,−l,−〉 is also a single state, the corresponding energy eigenvalue E2 =
ωPN − E+−(l + 1

2 ) + g(−l + δ′). It is interesting to see that these single states represent
states of no coupling between the atom and the fields, which is quite similar to the ground state
of the Jaynes–Cummings model.

Now, we discuss the time evolution of wavefunction from arbitrary initial conditions.
Denote by |�(0)〉 an arbitrary initial condition of the system:

|�(0)〉 =
∞∑

nP ,nS,nA=0

[
C+

nP ,nS,nA
|nP , nS, nA, +〉 + C−

nP ,nS,nA
|nP , nS, nA,−〉 ]

. (22)

In [5], Wu gave a formula expressing the eigenvectors of the orbital momentum |N, l,m〉
in terms of the Fock states |nP , nS, nA〉

|N, l,m〉 =
∑
k

Bk

∣∣∣∣2k, N − m

2
− k,

N + m

2
− k

〉
(23a)

where k = 0, 1, 2, . . . , (N − |m|)/2 for even l + m, and k = 1
2 ,

3
2 , . . . , (N − |m|)/2 for odd

l + m,

Bk = 2k

√
(l + m)!(l − m)!

(2l)!
l!Cl

rmax∑
r=rmin

(−1)r
1

4r r!

×
√

(2k)!
(
N−m

2 − k
)
!
(
N+m

2 − k
)
!(

N−l
2 − r

)
!
(
l−m

2 − k + r
)
!
(
l+m

2 − k + r
)
!(2k − 2r)!

(23b)

Cl =
[

(N−l)/2∑
r=0

(2r)!
(
N+l

2 − r
)
!

4r (r!)2
(
N−l

2 − r
)
!

]−1/2

(23c)

rmin = max[0, k − (l − |m|)/2)] rmax = min[k, (N − l)/2]. (23d)
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Similarly, we can expand the Fock states |nP , nS, nA〉 in terms of the eigenvectors of the orbital
momentum |N, l,m〉,

|nP , nS, nA〉 =
∑

l

Al|N, l,m〉 (24a)

where N = nP + nS + nA, m = nA − nS , l = N,N − 2, . . . , |m| for even N + m, and
l = N,N − 2, . . . , |m| + 1 for odd N + m,

Al = 2nP /2

√
(l + m)!(l − m)!

(2l)!
l!Cl

rmax∑
r=rmin

(−1)r
1

4r r!

×
√

nP !nS!nA!(
N−l

2 − r
)
!
(
l−m−nP

2 + r
)
!
(
l+m−nP

2 + r
)
!(nP − 2r)!

(24b)

rmin = max[0, (nP − l + |m|)/2)] rmax = min[nP /2, (N − l)/2]. (24c)

By means of equation (24a), |�(0)〉 can be written as

|�(0)〉 =
∑

nP ,nS,nA,l

[
AlC

+
nP ,nS,nA

|N, l,m, +〉 + AlC
−
nP ,nS,nA

|N, l,m,−〉]. (25)

With the help of equations (12), (18) and (21), we obtain the wavefunction |�(t)〉
|�(t)〉 = exp(−iHt)|�(0)〉 = T exp(−iH ′t)T −1|�(0)〉

=
∑

nP ,nS,nA,l

{AlC
+
nP ,nS,nA

exp[−iE0(N,m)t]

×[(cos g�(l,m)t/2 + i cos θ1 sin g�(l,m)t/2)|N, l,m, +〉
+i sin θ1 sin g�(l,m)t/2|N, l,m + 1,−〉]
+AlC

−
nP ,nS,nA

exp[−iE0(N,m − 1)t]

×[(cos g�(l,m − 1)t/2 − i cos θ2 sin g�(l,m − 1)t/2)|N, l,m,−〉
+i sin θ2 sin g�(l,m − 1)t/2|N, l,m − 1, +〉]} (26a)

where

cos θ1 = m + 1 + δ′

�(l,m)
sin θ1 = −

√
2l(l + 1) − 2m(m + 1)

�(l,m)

cos θ2 = m + δ′

�(l,m − 1)
sin θ2 = −

√
2l(l + 1) − 2m(m − 1)

�(l,m − 1)
.

(26b)

These general results immediately give the solution to any specific cases. For example, we
suppose that at time t = 0, pump mode is vacuum, Stokes and anti-Stokes mode are two-mode
SU(1, 1) coherent state, and the atom is in an excited state |+〉,
|�(0)〉 =

∞∑
n=0

Fn |0, n + q, n, +〉 =
∞∑

n=0

n∑
λ=0

FnAλ |2n + q, q + 2λ,−q, +〉 (27a)

where

Fn = (1 − ξ ∗ξ)(1+q)/2

√
(n + q)!

n!q!
ξn (27b)

Aλ =
√

(2λ)!(2q + 2λ)!(n + q)!n!

(2q + 4λ)!

(q + 2λ)!Cλ

(n − λ)!(q + λ)!λ!
(27c)

Cλ =
[

n−λ∑
r=0

(2r)!(n + q + λ − r)!

4r (r!)2(n − λ − r)!

]−1/2

. (27d)
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From equations (26) we obtain the time evolution of the wavefunction

|�(t)〉 =
∞∑

n=0

n∑
λ=0

FnAλ exp(−iE0t){i sin θ0 sin g�t/2|2n + q, q + 2λ,−q + 1,−〉

+[cos g�t/2 + i cos θ0 sin g�t/2]|2n + q, q + 2λ,−q, +〉} (28a)

where

E0 = 1
2g(δ

′ + 1 − q) + ωP (2n + q) − E+−(q − 1
2 ) (28b)

� =
√

2
√

(q + 2λ)(q + 1 + 2λ) − q(q − 1) + (δ′ + 1 − q)2 (28c)

cos θ0 = δ′ + 1 − q

�
sin θ0 = −

√
2
√

(q + 2λ)(q + 1 + 2λ) − q(q − 1)

�
. (28d)

It is worth pointing out that if δ′ = q − 1, the Rabi frequency � given by equation (28c) is the
same as one without a Stark term and frequency detuning.

In summary, based on supersymmetric quantum mechanics theory, we have introduced
a supersymmetric unitary transformation to diagonalize the Hamiltonian of coupled-channel
cavity QED model which include the Stark term and the frequency detuning. We have obtained
its eigenvalue, eigenstates and time evolution of the state vector. On one hand, these general
results immediately give the solution to any specific cases, and will facilitate the subsequent
investigations of the dynamical and statistical properties of the system, on the other hand, this
method is not only simple but universal as well.
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